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The Hamiltonian BRST quantization of massive abelian
p-form gauge fields

C Bizdadea†
Department of Physics, University of Craiova, 13 A I Cuza Str., Craiova R-1100, Romania

Received 2 January 1996

Abstract. In this paper we quantize the massive abelianp-form gauge fields inD dimensions
in the context of the Hamiltonian BRST formalism. Extending the original phase-space in order
to reveal the reducibility of a certain first-class system, we obtain that quantizing the original
theory is the same as quantizing a(p − 1)-order reducible system using BRST. This system
describes abelianp-form gauge fields interacting through a current–current term with abelian
(p − 1)-form gauge fields. Forp = 1 andD = 4 we recover the Stueckelberg coupling.

1. Introduction

The most powerful quantization method for gauge theories is well known to be the
BRST formalism. For systems with both first- and second-class constraints, many BRST
quantization alternatives have been implemented [1–6]. Some models studied intensively
recently, especially from the Hamiltonian BRST point of view, are abelianp-form gauge
fields free or coupled to vector fields [7–13]. The physical importance of these models
consists on the one hand of the profound connection with string theory and, on the other,
with cosmic strings, vortices and black holes [8, 12]. For theories possessing only second-
class constraints, this formalism cannot be directly applied because they are not gauge
invariant. The BRST quantization of such theories can be achieved by turning the original
second-class system into a first-class one (i) in the initial phase-space [14] or (ii) in a larger
phase-space [15, 16], and then quantizing the resulting first-class systems in the framework
of the BRST approach. Many authors [17–26] have applied the methods from [15, 16]
to various models. Nevertheless, the method from [15, 16] has not yet been extended to
the case of second-class systems preserving somehow the trace of reducibility of a certain
first-class system and peculiarly to the case of massive abelianp-form gauge fields inD
dimensions. This is the purpose of this paper. In fact, in the Hamiltonian BRST formalism
we shall quantize the massive abelianp-form gauge fields transforming the original system
to a first-class one in the light of the procedures (i) and (ii) to be further discussed. Procedure
(ii) will actually imply the BRST quantization of thep-form gauge fields interacting with
(p−1) ones through a current–current term. More on free abelianp-form gauge fields may
be found in [7]. Related to the Hamiltonian BRST quantization we follow the same line as
in [5].

Our starting point is the Lagrangian action

SL
0p

[Aµ1...µp ] =
∫

dDx
1

2

(
− 1

(p + 1)!
Fµ1...µp+1Fµ1...µp+1 − M2

p!
Aµ1...µpAµ1...µp

)
(1)
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where Fµ1...µp+1 = ∂[µ1Aµ2...µp+1] and Aµ1...µp
are antisymmetric in the Lorentz indices.

Action (1) describes a purely second-class system with the canonical Hamiltonian

H =
∫

dD−1x

(
(−)p+1 p!

2
πi1...ipπi1...ip − pA0i2...ip ∂i1π

i1i2...ip

+ M2

2p!
Aµ1...µpAµ1...µp

+ 1

2(p + 1)!
Fi1...ip+1F

i1...ip+1

)
(2)

and the primary, respectively, secondary second-class constraints

Gi2...ip ≡ π0i2...ip = 0 (3)

Ci2...ip ≡ p∂i1π
i1i2...ip − M2

(p − 1)!
A0i2...ip = 0 (4)

where πµ1...µp are the canonical momenta conjugated to theAµ1...µp
’s. We denote for

later convenienceC
i2...ip
(0) ≡ p∂i1π

i1i2...ip , andC
i2...ip
(1) ≡ − M2

(p−1)! A
0i2...ip . This completes the

canonical analysis of our model.

2. The BRST quantization without extra fields

Because the second-class constraints (3) and (4) may be split into two equally numbered
subsets such that theGi2...ip ’s are first class among themselves, we can consider that the
original system comes from a first-class one possessing only the constraints (3) in the
canonical gauge (4). In this way, we obtain a first-class system in the original phase-space
described by the Hamiltonian [14]

H̄ = H − (p − 1)!

2M2

∫
dD−1x Ci2...ipCi2...ip (5)

which is first class with respect to theGi2...ip ’s, i.e. [H̄ , Gi2...ip ] = 0 strongly. Next, we
quantize the last first-class system in the Hamiltonian BRST formalism. The BRST charge
reads

� =
∫

dD−1x

(
ηi2...ipGi2...ip +

2∑
a=1

Ba
i2...ip

P
i2...ip
η̄a

)
(6)

with ηi2...ip ’s the ghost fields and the remaining variables being auxiliary [27]. The BRST-
invariant extension ofH̄ is clearly BRST-invariant itself because [H̄ , �] = 0. We choose
a gauge-fixing fermion implementing at the Hamiltonian BRST level the canonical gauge
conditions (4). It has the form

K =
∫

dD−1x (Pi2...ip (Ȧ
0i2...ip + Ci2...ip ) + P

i2...ip

B2 (Pi2...ip − η̄1
i2...ip

+ ˙̄η2
i2...ip

)

+P
i2...ip

B1 (η̄2
i2...ip

+ ˙̄η1
i2...ip

)) (7)

with Pi2...ip the canonical momenta of the ghost fields, the other variables being associated to
the auxiliary variables from (6). Computing the gauge-fixed action of the first-class system
and integrating in the corresponding path integral,ZK , over all the variables excepting the
Ai1...ip ’s andπi1...ip ’s, we get

ZK =
∫

Dπi1...ipDAi1...ip exp i
∫

dDx (Ȧi1...ipπi1...ip − h̄) (8)
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where

h̄ = (−)p+1 p!

2
πi1...ipπi1...ip + 1

2(p + 1)!
Fi1...ip+1F

i1...ip+1

+ M2

2p!
Ai1...ipA

i1...ip − pp!

2M2
(∂i1π

i1...ip )2. (9)

Equation (8) gives precisely the Hamiltonian path integral over independent variables for
the first-class system. It coincides with the Hamiltonian path integral over independent
variables of the original system. The validity of the prior statement may be checked by
means of the canonical methods [28], confirming that our method is indeed correct. We can
also derive the Lagrangian path integral for our model making in the gauge-fixed action the
replacementCi2...ip → Ci2...ip + M2

2(p−1)! B
1
i2...ip

, which does not affect its BRST invariances as

sB1
i2...ip

= 0. Then, we deduce

ZL
K =

∫
DAi1...ip det(M) exp iSL

0p
. (10)

Relations (8) and (10) are the main results of this section.

3. The BRST quantization with extra fields

In this section we quantize our model converting the original second-class constraints
into some first-class ones by adding some extra fields and their conjugated momenta, and
subsequently applying the Hamiltonian BRST approach. Here, we shall not use the BFT
method [15, 16], but a different way which we extend to include the ‘reducible’ case. The
above notion of ‘reducibility’ will be made clear below. For the purpose of this section, it is
convenient to change the Hamiltonian (5) slightly, such that the new Hamiltonian remains
in the same gauge-invariant function equivalence class asH̄ . Thus, we take as the new
Hamiltonian in the original phase-space, the function

H ′ = H − (p − 1)!

M2

∫
dD−1x (C

i2...ip
(0) C(1)i2...ip + 1

2C
i2...ip
(1) C(1)i2...ip ). (11)

Our second conversion method is realized in two steps. At the first step, we associate as in
section 2, to the original system a first-class one in the original phase-space with the first-
class Hamiltonian (11) and the first-class constraints (3). At the second step, we associate
to the last system a one-parameter family of first-class systems in a larger phase-space
constructed as follows.

(i) For every pair (Gi2...ip , C
i2...ip
(0) ) we introduce the bosonic canonical pair

(V i1...ip−1, 5i1...ip−1) with the new variables antisymmetric in their indices, such that the
new secondary constraints are

γi2...ip ≡ λ5i2...ip − C(0)i2...ip = 0 (12)

whereλ is the non-vanishing parameter. We see simply that

∂i2γi2...ip = λ∂i25i2...ip = 0. (13)

(ii) For every relation (13) we add the new bosonic canonical pair of fields
(q0i2...ip−1, p0i2...ip−1), also antisymmetric in their indices together with the supplementary
constraints

Ḡi2...ip−1 ≡ p0i2...ip−1 = 0 (14)
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such that the consistency of (14) implies as new constraints (up to a factor) relations (13).
Following this procedure, we built starting with the original model, a first-class family in a
larger phase-space possessing only the first-class constraints (3), (12), (14) and

γ̄i2...ip−1 ≡ −(p − 1)∂i15i1...ip−1 = 0. (15)

A beautiful feature of this constraints is that they are reducible this time. Indeed, the
following reducibility relations hold:

λγ̄i2...ip−1 + (p − 1)∂i1γi1...ip−1 = 0 (16)

∂i2γ̄i2...ip−1 = 0. (17)

The reducibility functions appearing in (16), (17) are further reducible, namely

Zak−2
ak−1

Zak−1
ak

= 0 (18)

with

Zak−1
ak

=
(

Z
i1...ip−k

j1...jp−k−1
0

Z̄
i1...ip−k−1

j1...jp−k−1
Z

i1...ip−k−1

j1...jp−k−2

)
(19)

and

Z
i1...ip−k

j1...jp−k−1
= 1

(p − k)!
δ

[i1
j1

. . . δ
ip−k−1

jp−k−1
∂ip−k ] (20)

Z̄
i1...ip−k−1

j1...jp−k−1
= λ

(p − k − 1)!
δ

[i1
j1

. . . δ
ip−k−1]
jp−k−1

(21)

where k takes values from 1 to(p − 1). Now, it is clear that the first-class family is
(p − 1)-order reducible.

With step (ii) at hand, we build the first-class Hamiltonian of the first-class family of
the form

H ∗ = H ′ +
∫

dD−1x

(
− λ2(p − 1)!

2M2
5i1...ip−15

i1...ip−1

+A0i2...ip γi2...ip + q0i2...ip−1γ̄i2...ip−1 + g

)
(22)

whereg is a function satisfying

[Gi2...ip , g] = 0 [Ḡi2...ip−1, g] = 0 (23)

[γi2...ip , H
∗] = 0 (24)

[γ̄i2...ip−1, g] = 0. (25)

We solve the system (23)–(25) representingg as a series of powers inV i1...ip−1 with
coefficients depending only on theAi1...ip ’s

g =(1)
g i2...ip V i2...ip+ (2)

g
i2...ip

i2...ip
Vi2...ipV

i2...ip + · · · . (26)

With this choice, equations (23) are automatically verified. Introducing (26) in (24), we get

(1)
g i2...ip=

M2

λ(p − 1)!
∂i1Ai1i2...ip (27)

(2)
g

i2...ip

i2...ip
= − p

2λ
[∂i1π

i1...ip ,
(1)
g j2...jp

] (28)
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all the other coefficients being equal to zero. Using equations (27), (28) it follows that (25)
is also satisfied. Thus, the functiong reads

g = − M2

λ · p!

(
Ai1...ip − 1

2λ
F̃i1...ip

)
F̃ i1...ip (29)

whereF̃i1...ip = ∂[i1Vi2...ip ] .
The next step of our analysis consists in quantizing the first-class family in light of

the Hamiltonian BRST. In this case we are dealing with a(p − 1)-order reducible theory
revealing a more complicated structure than that of abelian freep-form gauge fields. This is
because here there appear two sets of secondary constraints and also two sets of reducibility
relations for them (see equations (16) and (17)). This fact further implies two types of
ghosts of ghosts, ghosts of ghosts of ghosts, etc. The BRST charge in this case reads

�′ =
∫

dD−1x

(
Gi1...ip−1η

i1...ip−1

1 + Ḡi1...ip−2Ci1...ip−2

1 + γi1...ip−1η
i1...ip−1

2 + γ̄i1...ip−2Ci1...ip−2

2

+
2∑

a=1

Ba
i1...ip−1

P
i1...ip−1

η̄a +
p−1∑
k=1

P2
i1...ip−k

∂ip−k η
i1...ip−k−1

2

+
p−1∑
k=1

P̄2
i1...ip−k−1

(∂ip−k−1Ci1...ip−k−2

2 + λη
i1...ip−k−1

2 )

)
. (30)

The BRST-invariant extension of the first-class Hamiltonian (22) is given by

HB = H ∗ +
∫

dD−1x (P̄2
i1...ip−2

Ci1...ip−2

1 + P2
i1...ip−1

η
i1...ip−1

1 ). (31)

The gauge-fixing fermion implementing the canonical gauge conditionsVi1...ip−1 = 0 and
q0i2...ip−1 = 0 takes the form

K ′ =
∫

dD−1x

(
P1

i1...ip−1

(
Ȧ0i1...ip−1 + 1

λ
V i1...ip−1

)
+ P̄1

i1...ip−2

(
q̇0i1...ip−2 + 1

λ
q0i1...ip−2

)
+P

i1...ip−1

B2 (η̄1
i1...ip−1

+ ˙̄η2
i1...ip−1

) + P
i1...ip−1

B1 (P1
i1...ip−1

− η̄2
i1...ip−1

+ ˙̄η1
i1...ip−1

)

−1

λ

p−1∑
k=1

P2
i1...ip−k−1

(−Ċi1...ip−k−1

2 + Ci1...ip−k−1

2 )

)
. (32)

In equations (30)–(32) we denoted by(Ci1...ip−2
a , η

i1...ip−1
a )a=1,2 the ghost fields corresponding

to the first-class constraints, while(P̄a
i1...ip−1

, Pa
i1...ip−1

)a=1,2 are, respectively, their conjugated
momenta. The ghost numbers and Grassmann parities of the above fields are all
equal to one, respectively one. The fields(Ci1...ip−k−2

a , η
i1...ip−k−1
a )a=1,2;k=1,...,p−1 are ghost

fields with ghost numbers(k + 1) and Grassmann parities(k + 1) mod 2, while
(P̄a

i1...ip−k−2
, Pa

i1...ip−k−1
)a=1,2;k=1,...,p−1 stand for their momenta and have the ghost numbers

−(k + 1) and Grassmann parities(k + 1) mod 2. The remaining fields in (30)–(32) form the
non-minimal sector (32). The notations employed in formulae (30)–(32) must be understood
asf j1...jp−k−2 = 0, for p−k−2 < 0 andf j1...jp−k−2 = f , for p−k−2 = 0. Integrating in the
path integral,Z′

K ′ , constructed with the gauge-fixed action corresponding to the first-class
family over all the fields excepting theAi1...ip ’s andπi1...ip ’s, we deduce

Z′
K ′ = ZK (33)

where ZK is given in (8). The Lagrangian path integral in this method is inferred by
making in the gauge-fixed action of the first-class family the replacements5i2...ip →



3990 C Bizdadea

5i2...ip + 1
λ
C(0)i2...ip (which do not affect its BRST invariances) and subsequently integrating

in the resulting path integral over all the fields excepting theAµ1...µp ’s. Thus, we find the
same Lagrangian path integral as in (10).

Now, it appears clearly the meaning of the original system preserving the trace of
reducibility of a certain first-class system. This first-class system is actually described by
the first-class Hamiltonian (22) together with the first-class constraints (3), (12), (14), (15).
Indeed, if one takes all the extra fields equal to zero in (22), one reobtains precisely the
original system. At the same time, the gauge-fixing fermion (32) implying the vanishing of
all extra fields leads to the same path integral of the first-class family as the original one. In
this sense, the original second-class system maintains the reducibility relic of the first-class
family, which is a truly(p − 1)-order reducible theory.

4. The Lagrangian action of the first-class family

In this section we will explain the origin of the first-class family constructed in section 3.
Eliminating from the total action [5] corresponding to the Hamiltonian (22) and to the
constraints (3), (14) all the momenta and Lagrange multipliers on their equations of motion
[27], we arrive at the following Lagrangian action of the first-class family

SL
0p,p−1

=
∫

dDx

(
− 1

2(p + 1)!
Fµ1...µp+1Fµ1...µp+1

− M2

2p!

(
Aµ1...µp − 1

λ
F̃ µ1...µp

) (
Aµ1...µp

− 1

λ
F̃µ1...µp

) )
(34)

where F̃µ1...µp
= ∂[µ1Aµ2...µp ] and Aµ1...µp−1 = (q0i2...ip−1, Vi1...ip−1). Action (34) is invariant

under the next gauge transformations

δεAµ1...µp
= ∂[µ1εµ2...µp ] (35)

δεAµ1...µp−1 = ∂[µ1εµ2...µp−1] + λεµ1...µp−1 (36)

with ε’s antisymmetric arbitrary functions. The system described by action (34) comes from
the gauging of the rigid (Noether) symmetriesδεAµ1...µp−1 = λεµ1...µp−1 (hereεµ1...µp−1 are
all constant) of the action

SL
0p−1

=
∫

dDx

(
− M2

2λ2p!
F̃ µ1...µp F̃µ1...µp

)
. (37)

If we now make theεµ1...µp−1’s functions ofx, then action (37) is no longer gauge invariant.
In order to render it invariant it is necessary to couple theF̃ µ1...µp ’s with a tensor field
transforming as in (35) such that the objectsAµ1...µp − 1

λ
F̃ µ1...µp become gauge-invariant.

Constructing with these objects a Lorentz scalar as in (34), we observe that we can add to
it an other gauge-invariant scalar, namely the first term in (34). Following our procedure,
the first-class family associated to the massivep-form gauge fields describesp-form gauge
fields in interaction with(p−1)-form gauge fields by means of a current–current type term,
where the gauge-invariant conserved current is

jµ1
µ2...µp

= M

p!

(
Aµ1

µ2...µp
− 1

λ
F̃ µ1

µ2...µp

)
. (38)

The current (38) corresponds via Noether’s theorem to the above rigid symmetries for action
(34). At the Lagrangian level, we are able to fix the value of the parameter comparing the
path integral (10) with the one derived from (34) using the antifield formalism. We find
λ = M.
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For p = 1 andD = 4, action (34) reduces to

SL
01,0

=
∫

d4x (− 1
4FµνFµν − 1

2(MAµ − ∂µϕ)(MAµ − ∂µϕ)) (39)

describing an irreducible theory which is identical to the one obtained in [29], and also in
[30] using a conversion method for irreducible systems.

In conclusion, we can quantize consistently the massive abelianp-form gauge fields in
the framework of the Hamiltonian BRST formalism in the original phase-space, as well as
in a larger one. The last quantization implies in fact the quantization of a(p − 1)-order
reducible theory expressingp-form gauge fields interacting with(p − 1)-form gauge fields
through a current–current term.
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